Publicações

Artigos em revistas indexadas

● Almeida, R. M. P., Duque, J. C. M., Ferreira, J. & Panni, W. S. (2025). Numerical analysis for an evolution equation with the p-biharmonic operator. Applied Numerical Mathematics, 216,164-186. https://doi.org/10.1016/j.apnum.2025.05.006

● Almeida, R. M. P., Duque, J. C. M., Ferreira, J. & Panni, W. S. (2023). Mixed finite element method for a beam equation with the p(x)-biharmonic operator. Comput. Math. Appl., 139, 57-67. https://doi.org/10.1016/j.camwa.2023.03.004

● Almeida, R. M. P., Duque, J. C. M., & Mário, B. C. X. (2023). Numerical solution for a class of evolution differential equations with p-Laplacian and memory. J. Comput. Appl. Math., 428, 115-144. https://doi.org/10.1016/j.cam.2023.115144

● Almeida, R. M. P., Duque, J. C. M. & Mário, B. C. X. (2022). A mixed finite element method for a class of evolution differential equations with p-Laplacian and memory. Appl. Numer. Math. 181, 534-551. https://doi.org/10.1016/j.apnum.2022.07.004

● Almeida, R. M. P., Chihaluca, T. D., & Duque, J. C. M. (2022). Approach to the Delta Greek of nonlinear Black-Scholes equation governing European options. J. Comput. Appl. Math. 402, 113790. https://doi.org/10.1016/j.cam.2021.113790

● Vieira, M. V. C., Ferreira, F., Duque, J. C. M., & Almeida, R. M. P. (2021) On the packing process in a shoe manufacturer. Journal of The Operational Research Society, 72(4):853-864. https://doi.org/10.1080/01605682.2019.1700765

● Almeida, R. M. P., Duque, J. C. M., Ferreira, J., & Robalo, R. J. (2018) Finite element schemes for a class of nonlocal parabolic systems with moving boundaries. Appl. Numer. Math., 127:226-248. https://doi.org/10.1016/j.apnum.2018.01.007

● Almeida, R. M. P., Antontsev, S. N., & Duque, J. C. M. (2017) On the finite element method for a nonlocal degenerate parabolic problem. Comput. Math. Appl., 73(8):1724-1740. https://doi.org/10.1016/j.camwa.2017.02.013

● Almeida, R. M. P., Antontsev, S. N., & Duque, J. C. M. (2017) Discrete solutions for the porous medium equation with absorption and variable exponents. Math. Comput. Simulation, 137:109-129. https://doi.org/10.1016/j.matcom.2016.12.008

● Almeida, R. M. P., Antontsev, S. N., Duque, J. C. M., & Ferreira, J. (2016) A reaction-diffusion model for the non-local coupled system: existence, uniqueness, long-time behaviour and localization properties of solutions. IMA J. Appl. Math., 81(2):344-364. https://doi.org/10.1093/imamat/hxv041

● Duque, J. C. M., Almeida, R. M. P., Antontsev, S. N., & Ferreira, J. (2016) The Euler- Galerkin finite element method for a nonlocal coupled system of reaction-diffusion type. J. Comput. Appl. Math., 296:116-126. https://doi.org/10.1016/j.cam.2015.09.019

● Almeida, R. M. P., Antontsev, S. N., and Duque, J. C. M. (2016) On a nonlocal degenerate parabolic problem. Nonlinear Anal. Real World Appl., 27:146-157. https://doi.org/10.1016/j.nonrwa.2015.07.015

● Duque, J. C. M., Almeida, R. M. P., & Antontsev, S. N.(2015) Application of the moving mesh method to the porous medium equation with variable exponent. Math. Comput. Simulation, 118:177-185. https://doi.org/10.1016/j.matcom.2014.11.025

● Almeida, R. M. P., Duque, J. C. M., Ferreira, J. & Robalo, R. J.(2015) The Crank-Nicolson-Galerkin finite element method for a nonlocal parabolic equation with moving boundaries. Numer. Methods Partial Differential Equations, 31(5):1515-1533. https://doi.org/10.1002/num.21957

● Duque, J. C. M., Almeida, R. M. P., & Antontsev, S. N. (2014) Numerical study of the porous medium equation with absorption, variable exponents of nonlinearity and free boundary. Appl. Math. Comput., 235:137-147. https://doi.org/10.1016/j.amc.2014.02.1000

● Duque, J. C. M., Almeida, R. M. P., & Antontsev, S. N.(2013) Convergence of the finite element method for the porous media equation with variable exponent. SIAM J. Numer. Anal., 51(6):3483-3504. https://doi.org/10.1137/120897006